Natural Product Analogues

Parallel Fragment Assembly Strategy Towards Multiple-Ether Mimicry of Anticancer Annonaceous Acetogenins**

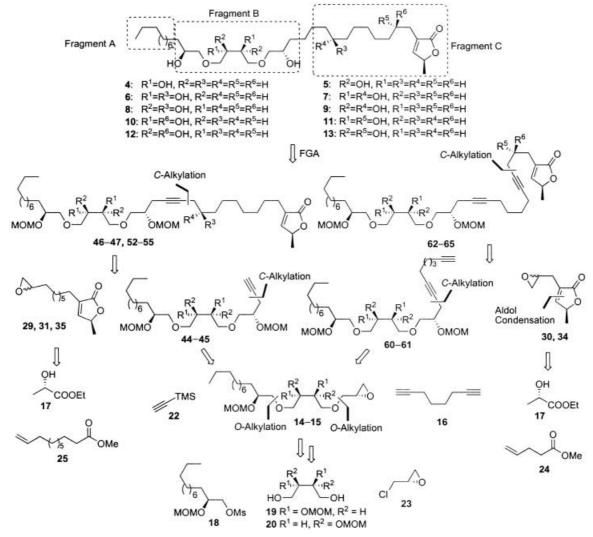
Sheng Jiang, Yan Li, Xiao-Guang Chen, Tai-Shan Hu, Yu-Lin Wu, and Zhu-Jun Yao*

The annonaceous acetogenins are naturally occurring polyketides isolated from various species of the plant genus Annonaceae. To date, over 400 members of this compound family have been found, most of which have been proven to exhibit high cytotoxic and antitumor activities.[1] The structural features of these acetogenins include several free hydroxy groups with various stereochemistries, variously located oxygenated functional groups, and tetrahydrofuran (THF) ring(s) along the hydrocarbon skeleton. The unique structural features and interesting biological activities of these compounds have rendered them attractive targets for the development of efficient syntheses of both the natural products and functional mimetics.^[2,3] In nature, annonaceous acetogenins are believed to block oxidative pathways in complex I in mitochondria, [4] and there is evidence that some members of the family induce apoptosis in cancer cells.^[5] In 1994, a group of Japanese chemists first reported NMR studies showing that annonaceous acetogenins can coordinate a calcium cation. [6] Their results prompted us to investigate the biological importance of this property and how it relates to the reported activities of these compounds. On first inspection, the THF ring(s) and flanking hydroxy groups are the structural components most likely to interact with metal cations. Over the past several years, we have successfully developed a series of annonaceous acetogenin mimetics^[7–11] in which the THF rings and flanking hydroxy groups have been replaced by an ethylene glycol ether unit. These analogues with simplified structures have proved to be as active as the natural products. More interestingly, we have found that some of these analogues have much better selectivity between

 ^[*] Dr. S. Jiang, Dr. T.-S. Hu, Prof. Y.-L. Wu, Prof. Dr. Z.-J. Yao State Key Laboratory of Bioorganic and Natural Products Chemistry
 Shanghai Institute of Organic Chemistry
 354 Fenglin Road, Shanghai 200032 (China)
 Fax: (+86) 2164166128
 E-mail: yaoz@mail.sioc.ac.cn
 Y. Li, Prof. Dr. X.-G. Chen
 Institute of Materia Medica
 Chinese Academy of Medical Sciences
 1 Xiannongtan Street, Beijing 100050 (China)

^[**] This work was supported by the National Natural Science
Foundation of China (grant no. 30271531), the Ministry of Science
and Technology (MOST) of China (grant no. G2000077502), the
Chinese Academy of Sciences (CAS; grant no. KGCX2-SW-209), and
the Shanghai Municipal Committee of Science and Technology
(grant no. 01QA14049). Dr. Terrence R. Burke, Jr. at the National
Cancer Institute (NCI) is thanked for correcting the English text.

Zuschriften


human cancer cells and normal cells.^[8] Such selectivity is very difficult to achieve with the naturally occurring counterparts.

In our previous work, bullatacin, a typical acetogenin and one of the most potent, was selected as a template for mimetic design. [12] The first generation of mimetics was

Scheme 1. Bullatacin and three typical mimetics 1-3 produced by random synthesis.

obtained by simple modification of the THF region of the molecules and by random syntheses. Individual screening revealed that AA005 (1; Scheme 1) is a better agent than bullatacin against several human cancers cells, [9] such as HT-29 and HCT-8. We also recently confirmed that AA005 interacts with the same biological target as do the natural products. [10] A further investigation showed that introduction of a (4R)-hydroxy group into AA005 (1) raises the potency by up to 15 times (AA019, 2). [11] Introduction of a (10R)-hydroxy

group into the AA005 skeleton (AA029, 3) had little effect on the activity. [8] To accelerate progress in the search for more potent and selective anticancer agents with such modifications and to obtain clearer information on the structure–activity relationship (SAR) of the acetogenins from these mimetics, a systematic organic synthesis strategy involving parallel fragment assembly was developed. By using this strategy, small, focused libraries could be set up efficiently (Scheme 2; these compounds are designated as second-

Scheme 2. General fragmentation and retrosynthetic analyses for the acetogenin mimetics **4–13**. FGA = functional group addition, MOM = methoxymethyl, TMS = trimethylsilyl, OMs = mesylate.

generation mimetics). [13] Herein, we report our initial results from this approach, by which we have synthesized a new class of mimetics. Several of these analogues exhibit good-to-excellent anticancer activity in the low micromolar range.

As shown in Scheme 2, a typical mimetic structure can be broken down into three major fragments A, B, and C, each of which can be synthesized individually or purchased from commercial sources. Assembly of these fragments can be achieved by convergent syntheses. By varying the combination of fragments, ten analogues of the annonaceous acetogenins were obtained by parallel assembly of prefunctionalized units (Scheme 2). The most structurally significant modification in these compounds was made in the middle region (Fragment B), where an L- or D-threotol unit was introduced. In addition, a position-shifting and configuration-variable hydroxy group was introduced into the right-hand portion of the structure (Fragment C).

A retrosynthetic analysis of **4–13** is shown in Scheme 2. After a standard FGA treatment of these targets, a key step involved two directional *C*-alkylations of 1,7-octadiyne **16** or trimethylsilylacetylene **(22)** with epoxides **14** or **15** and **29**, **31**, or **35**, or **30** or **34**. To form the ether bonds of the common intermediates **14** and **15**, two successive directional *O*-alkylations were used.

which gave precursors **18**, **19** or **20**, and **23**. Compounds **19** and **20** could in turn be prepared easily from L- and D-tartaric acid, [14] respectively. Synthesis of terminal butenolides **30**, **31**, **34**, and **35** could be achieved by a three-step protocol that included an aldol condensation [15] and the hydrolytic kinetic resolution transformation developed by Jacobsen and coworkers. [16]

The synthesis of key intermediates **30**, **31**, **34**, and **35** is illustrated in Scheme 3. Compounds **24** and **25** can be prepared easily from the corresponding acids. Appendage of butenolide units onto **24** and **25** to form **26** and **27** involved a three-step sequence: 1) aldol reaction of **24** and **25** with freshly prepared (2S)-O-tetrahydropyranyl (O-THP) lactal, 2) acid-catalyzed deprotection of the O-THP group and

in situ lactonization, and 3) elimination of a β-hydroxy group by treatment with $(CF_3CO)_2O$ and Et_3N . Regioselective epoxidation of **26** and **27** was achieved by treatment with mCPBA to give **28** and **29** in 86% yield. The hydrolytic kinetic resolution of Jacobsen and co-workers was applied to resolve the terminal epoxides. This reaction was performed in the presence of an (S,S)-salen–Co(OAc) complex (0.5 mol %) and H_2O (0.55 equiv) to yield **30** and **31** (43%) and diols **32** and **33** (50%) at 4°C. The diastereomeric ratio (d.r.) of **30** and of **31** (>99%) was measured by HPLC, with **28** and **29** as references. The limits of the presence of (R,R)-salen–Co(OAc) (0.5 mol %) and H_2O (0.55 equiv).

The remaining key intermediates **14** and **15** were synthesized as outlined in Scheme 4. Diol **21** was easily prepared from D-mannitol^[8] and was regioselectively protected as

Scheme 4. Reagents and conditions: a) 1. HC(OCH₃)₃, D-10-camphorsulfonic acid, CH_2Cl_2 , 2. diisobutylaluminum hydride in toluene, CH_2Cl_2 , 0°C, two steps: 90%. b) MsCl, Et_3N , CH_2Cl_2 , 100%. c) **19** or **20** (for **40** and **41**, respectively), NaH, DMF, 130°C, 78%. d) NaOH, H_2O , Bu_4NHSO_4 , (R)-epichlorohydrin, 78%.

MOM ether **38** in 90% yield by a two-step procedure. [18] The remaining primary hydroxy group was then masked as a mesylate (**39**, 100% yield). Parallel reaction of mesylate **39** with diols **19** and **20** afforded monoalcohols **40** and **41** in 78% yield. In the presence of a phase-transfer catalyst, [19] further O-alkylation of alcohols **40** and **41** by treatment with R-(-)-epichlorohydrin **23** led to key intermediates **14** and **15**, respectively, in 78% yield.

With the functionalized segments described above in hand, a series of parallel assemblies was undertaken that involved the sequential *C*-alkylation of terminal alkynes by the required epoxides. Regioselective opening of epoxides **14** and **15** by treatment with the monolithium salt of trimethyl-silylacetylene, followed by protection with MOM and deprotection of the TMS group afforded the "left-hand" segments

Scheme 3. Reagents and conditions: a) 1. lithium diisopropylamide, THF-hexamethyl phosphoramide, (S)-O-tetrahydropyranyl lactal, -78°C; 2. 10% H₂SO₄, THF, RT; 3. (CF₃CO)₂O, Et₃N, CH₂Cl₂, 60%. b) meta-chloroperbenzoic acid (mCPBA), CH₂Cl₂, 0°C, 86% yield based on 31% recovery of olefins 26–27. c) (S,S)-salen–Co(OAc), H₂O, 43% yield for epoxides 30 and 31. d) (R,R)-salen–Co(OAc), H₂O, 43% yield for epoxides 34 and 35.

Zuschriften

44 and **45**. Treatment of the terminal alkynes in **44** and **45** with n-butyllithium, followed by reaction with epoxide **29** in the presence of BF₃ etherate at -78 °C gave the fully elaborated skeletons **46** and **47** in 70 % yield. [20] Elimination of the newly introduced hydroxy groups by treatment with (CF₃CO)₂O and Et₃N (or MsCl and Et₃N) gave **48** and **49**. Selective reduction of the triple and double bonds in the centers of **48** and **49** was achieved by reaction with a diimide. Deprotection of the MOM ethers by treatment with boron trifluoride and dimethylsulfide gave the final products **4** and **5** (Scheme 5). [21]

Treatment of alkynes **44** and **45** with butyllithium and enantiomerically pure epoxides **31** and **35** in different combinations in the presence of BF₃ etherate at $-78\,^{\circ}$ C gave the fully assembled skeletons **52–55**. Subsequent selective reduction of the triple bonds and cleavage of the MOM groups in **52–55** yielded the final products **6–9** (Scheme 6).

Scheme 5. Reagents and conditions: a) 1. nBuLi, $BF_3 \cdot Et_2O$, THF, trimethylsilylacetylene, $-78\,^{\circ}C$; 2. iPr_2NEt , MOMCl, CH_2Cl_2 , 60%. 3. Tetrabutylammonium fluoride, THF, 0°C, 92%. b) nBuLi, $BF_3 \cdot Et_2O$, THF, $-78\,^{\circ}C$, 70%. c) $(CF_3CO)_2O$, Et_3N , CH_2Cl_2 , 40%, or MsCl, 1,8-diazabicyclo[5.4.0]undec-7-ene, CH_2Cl_2 , 60%. d) TsNHNH₂, NaOAc, 1,2-dimethoxyethane (DME), reflux, 70%. e) $BF_3 \cdot Et_2O$, Me_2S , 0°C, 50%. Ts = tosyl.

Scheme 6. Reagents and conditions: a) nBuLi, $BF_3 \cdot Et_2O$, THF, -78 °C, 67%. b) $TsNHNH_2$, NaOAc, DME, reflux, 88%. c) $BF_3 \cdot Et_2O$, Me_2S , 0 °C, 53%.

By analogy to the synthesis described above, reaction of a preformed monolithium salt solution of 1,7-octadiyne (16) with epoxides 14 and 15 was performed in parallel in the presence of $BF_3 \cdot Et_2O$. The newly generated hydroxy group was protected as its MOM ether, which resulted in 60 and 61. Parallel treatment of 60 and 61 with nBuLi, followed by reaction with epoxides 30 and 34 in a variety of combinations afforded 62–65. The triple bonds in 62–65 were reduced by treatment with diimide, and deprotection of the MOM ethers afforded targets 10–13 (Scheme 7).

Preliminary in vitro measurements gave IC_{50} values in the low micromolar range for the synthetic mimetics (Table 1), except against the Bel-7402 cell line. Compounds **12** and **13** are more potent than **1** against KB cells. It is apparent that activity against Bel-7402 cells is decreased by the introduction of hydroxy groups into the region of the ether bonds in **1**. Such modification improved the selectivity between the KB and Bel-7402 cell lines. This result indicates that the stereochemistry in the vicinity of the ether bonds may provide important contributions to the cytotoxicity towards and selectivity between the various tumor cell lines.

In summary, a new class of multiple-ether-modified analogues (4–13) of the annonaceous acetogenins was designed based on the structures of mimetics 1 and 2, and the analogues were synthesized enantioselectively by using a parallel fragment-assembly strategy that involved the combination of prefunctionalized units. This methodology may potentially be applicable to the synthesis of further analogues of this family, as well as other complex, focused libraries. Directional chemo- or regioselective *C*- and *O*-alkylations

61: R1=H, R2=OMOM

$$R^3$$
 R^4
 R^2
 R^1
 R^2
 R^1
 R^2
 R^3
 R^4
 R^4
 R^2
 R^1
 R^2
 R^3
 R^4
 R^2
 R^1
 R^2
 R^3
 R^4

62: R1=OMOM, R2=H, R3=H, R4=OH

63: R¹=OMOM, R²=H, R³=OH, R⁴=H

64: R¹=H, R²=OMOM, R³=H, R⁴=OH

65: R¹=H, R²=OMOM, R³=OH, R⁴=H

10: R¹=OH, R²=H, R³=H, R⁴=OH

11: R¹=OH, R²=H, R³=OH, R⁴=H **12**: R¹=H, R²=OH, R³=H, R⁴=OH

13: R¹=H, R²=OH, R³=OH, R⁴=H

Scheme 7. Reagents and conditions: a) 1. 16, nBuLi, BF₃·Et₂O, THF, -78 °C; 2. iPr₂NEt, MOMCl, CH₂Cl₂, 66% over two steps. b) nBuLi, BF₃·Et₂O, THF, -78 °C, 48 %. c) 1. TsNHNH₂, NaOAc, DME, reflux; 2. $BF_3 \cdot Et_2O$, Me_2S , 0 °C, 49% over two steps.

Table 1: Cytotoxicity data of 1, 4-13, and adriamycin in vitro.

Compound no. or name	IC ₅₀ (μм)			
	KB	Bel-7402	HT-29	HCT-8
1 ^[a]	7.65	1.99	0.099	0.11
4	4.02	>10	1.84	3.49
5	13.13	>10	5.72	8.58
6	13.81	>10	7.19	5.71
7	23.30	>10	9.79	10.00
8	9.68	>10	4.56	24.46
9	21.30	>10	7.22	6.14
10	6.75	>10	3.60	3.39
11	6.38	>10	2.36	3.51
12	2.00	>10	1.75	2.00
13	2.35	4.14	1.51	3.46
adriamycin ^[a]	< 0.01	0.95	0.055	0.11

[a] Adriamycin and compound 1 were selected as the positive controls in the screening.

served as key reactions in the synthesis of the target linear assemblies. An aldol-condensation-centered three-step procedure was utilized to form terminal y-butenolides. The starting materials were all readily availabile and the reagents inexpensive. Biological evaluation of the products showed that introduction of hydroxy groups to the ether-bond region of the compounds results in different selectivities and potencies for different tumor cells. Most importantly, the parallel synthetic strategy presented herein may accelerate discovery of potent and selective antitumor agents. Further SAR information may be forthcoming as additional focused libraries become available.

Received: August 19, 2003 Revised: October 6, 2003 [Z52681] Keywords: antitumor agents · natural products · parallel synthesis · synthesis design

- [1] For reviews, see: a) J. K. Rupprecht, Y. H. Hui, J. L. McLaughlin, J. Nat. Prod. 1990, 53, 237; b) X. P. Fang, M. J. Rieser, Z. M. Gu, J. L. McLaughlin, Phytochem. Anal. 1993, 4, 27; c) Z.-J. Yao, Y.-L. Wu, Chin. J. Org. Chem. 1995, 15, 120; c) L. Zeng, Q. Ye, N. H. Oberlies, G. E. Shi, Z. M. Gu, K. He, J. L. McLaughlin, Nat. Prod. Rep. 1996, 275; d) A. Cave, B. Figadere, A. Laurens, D. Cortes, Fortschr. Chem. Org. Naturst. 1997, 70, 81; e) F. Q. Alali, X.-X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62, 504.
- Recent examples of total synthesis of annonaceous acetogenins: a) S. Takahashi, A. Kubota, T. Nakata, Org. Lett. 2003, 5, 1353; b) N. Maezaki, N. Kojima, A. Sakamoto, H. Tominaga, C. Iwata, T. Tanaka, M. Monden, B. Damdinsuren, S. Nakamori, Chem. Eur. J. 2003, 9, 390.c) S. Takahashi, A. Kubota, T. Nakata, Tetrahedron Lett. 2002, 43, 8661; d) S. Takahashi, T. Nakata, J. Org. Chem. 2002, 67, 5739; e) D. J. Dixon, S. V. Ley, D. J. Reynolds, Chem. Eur. J. 2002, 8, 1621; f) H. Makabe, Y. Hattori, A. Tanaka, T. Oritani, Org. Lett. 2002, 4, 1083, and references cited therein.
- [3] Studies on mimicry of annonaceous acetogenins: a) P. Duret, R. Hocquemiller, J.-C. Gantier, B. Frigadere, Bioorg. Med. Chem. 1999, 7, 1821; b) S. Hoppen, U. Emde, T. Friedrich, L. Grubert, U. Koert, Angew. Chem. 2000, 112, 2181; Angew. Chem. Int. Ed. 2000, 39, 2099; c) S. Arndt, U. Emde, S. Baeurle, T. Friedrich, L. Grubert, U. Koert, Chem. Eur. J. 2001, 7, 993; d) T. Gallardo, M. C. Zafra-Polo, J. R. Tormo, M. C. Gonzalez, X. Franck, E. Estornell, D. Cortes, J. Med. Chem. 2000, 43, 4793; e) J. R. Tormo, E. Estornell, T. Gallardo, M. C. Gonzalez, A. Cave, S. Granell, D. Cortes, M. C. Zafra-Polo, Bioorg. Med. Chem. 2001, 11, 681; f) S. Rodier, Y. L. Huerou, B. Renoux, J. Doyon, P. Renard, A. Pierre, J. P. Gesson, R. Gree, Anti-Cancer Drug Des. 2001, 16, 109, and refs. [7, 8, 10, 12].
- [4] a) J. L. Landolt, K. I. Ahammadsahib, R. M. Hollingworth, R. Barr, F. L. Crane, N. L. Buerck, G. P. McCabe, J. L. McLaughlin, Chem.-Biol. Interact. 1995, 98, 1; b) R. José, T. Tormo, R. Gallardo, D. Aragón, E. E. Cortes, Chem.-Biol. Interact. 1999, *122*, 171.
- [5] H. W. Chih, H. F. Chiu, K. S. Tang, F. R. Chang, Y. C. Wu, Life Sci. 2001, 69, 1321.
- [6] a) S. Sasaki, H. Naito, K. Maruta, E. Kawahara, M. Maeda, Tetrahedron Lett. 1994, 35, 3337; b) S. Sasaki, K. Maruta, H. Naito, H. Sugihara, K. Hiratani, M. Maeda, Tetrahedron Lett. 1995, 36, 5571; c) J.-P. Peyrat, J. Mahuteau, B. Figadere, A. Cave, J. Org. Chem. 1997, 62, 4811.
- [7] a) Z.-J. Yao, H.-P. Wu, Y.-L. Wu, J. Med. Chem. 2000, 43, 2484; b) S. Jiang, Y.-L. Wu, Z.-J. Yao, Chin. J. Chem. 2002, 20, 1393.
- [8] B.-B. Zeng, Y. Wu, S. Jiang, Q. Yu, Z.-J. Yao, Z.-H. Liu, H.-Y. Li, Y. Li, X.-G. Chen, Y.-L. Wu, Chem. Eur. J. 2003, 9, 282.
- [9] B.-B. Zeng, Y. Wu, Q. Yu, Y.-L. Wu, Y. Li, X.-G. Chen, Angew. Chem. 2000, 112, 2010; Angew. Chem. Int. Ed. 2000, 39, 1934.
- [10] G. Huang, S. Jiang, Y.-L. Wu, Z.-J. Yao, J. Wu, ChemBioChem **2003**, 4, 1216.
- [11] S. Jiang, Z.-H. Liu, G. Sheng, B. -B, Zeng, X.-G. Chen, Y.-L. Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 3404.
- [12] a) Y. H. Hui, J. K. Rupprecht, Y. M. Liu, J. E. Anderson, D. L. Smith, C. J. Chang, J. L. McLaughlin, J. Nat. Prod. 1989, 52, 463; b) H. W. Chih, H. F. Chiu, Y. M. Hsian, C. H. Tseng, M. J. Wu, Y. C. Wu, Biochem. Pharmacol. 2003, 65, 319.
- [13] For recent reviews on natural-product-based libraries, see: a) R. Breinbauer, I. R. Vetter, H. Waldmann, Angew. Chem. 2002, 114, 3002; Angew. Chem. Int. Ed. 2002, 41, 2878; b) P. Arya, R. Joseph, D. T. H. Chou, Chem. Biol. 2002, 9, 145; c) D. G. Hall, S. Manku, F. Wang, J. Comb. Chem. 2001, 3, 125.

Zuschriften

- [14] a) H. Iida, N. Yamazaki, C. Kibayashi, *Tetrahedron Lett.* 1985, 26, 3255; b) H. Iida, N. Yamazaki, C. Kibayashi, *J. Org. Chem.* 1986, 51, 1069; c) A. Mccaig, K. P. Meldrum, R. H. Wightman, *Tetrahedron* 1998, 54, 9429.
- [15] a) Z.-J. Yao, Y.-L. Wu, Tetrahedron Lett. 1994, 35, 157; b) Z.-J. Yao, Y.-L. Wu, J. Org. Chem. 1995, 60, 1170.
- [16] a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307; b) Q. Yu, Y. Wu, L.-J. Xia, M.-H. Tang, Chem. Commun. 1999, 129.
- [17] HPLC conditions for determination of the d.r. values of epoxides **30**, **31**, **34**, and **35**: UV detector (214 nm); Chiralcel AS column; eluent: *i*PrOH/Hexane (2:8); flow rate: 0.7 mL min⁻¹. Retention times: 31.24 min for **30** and 28.74 min for **34**; 67.66 min for **31** and 56.17 min for **35**.
- [18] L. L. He, H. S. Byun, R. Bittman, J. Org. Chem. 2000, 65, 7618.
- [19] Y. L. Huerou, J. Doyon, R. L. Gree, J. Org. Chem. 1999, 64, 6782.
- [20] M. Yamaguchi, I. Hirao, Tetrahedron Lett. 1983, 24, 391.
- [21] a) T.-S. Hu, Q. Yu, Y.-L. Wu, Y. Wu, J. Org. Chem. 2001, 66, 853;
 b) J. A. Marshall, M. Z. Chen, J. Org. Chem. 1997, 62, 5996.